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Abstract

This study presents an empirical method to predict the CCN concentration as a func-
tion of percent supersaturation. The aerosol optical properties of backscatter fraction
and single scatter albedo function as proxies for the aerosol size and composition in a
power law relationship to CCN. This method is tested at four sites with aged aerosol:5

SGP (Oklahoma, USA), FKB (Black Forest, Germany), HFE (Hefei, China) and GRW
(Graciosa, Azores). Each site represents a different aerosol type and thus demon-
strates the method robustness and limitations. Good agreement was found between
the calculated and measured CCN with slopes between 0.81 and 1.03 and correlation
coefficients (r2 values) between 0.59 and 0.67. The fit quality declined at low CCN10

concentrations in a region with higher data uncertainty.

1 Introduction

The highest uncertainty in estimates of climate forcing is the indirect forcing associ-
ated with clouds (Solomon et al., 2007). Clouds present a formidable challenge to
parameterize their spatial variance, lifetime, albedo, precipitation and formation. The15

full characterization of aerosol activation into cloud droplets as a function of the per-
cent super saturation is one such challenge. Calculation of aerosol activation to cloud
condensation nuclei concentration (CCN) using Köhler’s equation requires knowledge
of the size-dependent aerosol composition. Because of the resource and computa-
tional intensive nature of these measurements and models, long term monitoring of20

aerosol size-dependent composition for different aerosol types and regions is not cur-
rently feasible. A widely used simplification of Köhler equation is the κ-Köhler model
developed by Petter and Kriedenweis (2007), which uses a single parameter, κ, to re-
late the aerosol water activity and solute concentration. Several studies have a similar
simplification of Köhler’s equation or build upon the κ model by using proxies such as25

the aerosol hygroscopic growth (Good et al., 2009; Ervens et al., 2007; Petters et al.,
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2009), soluble fraction and mixing state (Ervens et al., 2009), fraction of refractory ma-
terial or organic composition (Shinozuka et al., 2009). Other empirical methods relate
the CCN concentration to a power law fit using aerosol size and composition data or
directly to the aerosol extinction (Gahn et al.,1995, 2006; Khvorostyanov and Curry,
2006; Andreae, 2009).5

This study presents an empirical model of the CCN concentration from the aerosol
optical properties. The model is a power law fit of the CCN data that uses the aerosol
backscatter fraction and the single scatter albedo as proxies for the aerosol size and
composition. The model fits empirical predictions of CCN for four regional sites from
the US Department of Energy Atmospheric Radiation Measurement Climate Research10

Facilities (ACRF). Each of these sites represents a different aerosol type and shows
both the robustness and limitations of this method in predicting CCN. The sites in this
study are the Southern Great Plains, Oklahoma (SGP), the Murg Valley, Germany
(FKB), Shouxian, China (HFE), and Graciosa Island, Azores (GRW). Because a broad
network of aerosol optical measurements already exists, this empirical method has the15

potential to provide data for model assimilation and validation of CCN processes on
local to global scales.

2 Measurements

In-situ measurements of aerosol optical properties and CCN were conducted at the
four ARM Climate Research Facility (ACRF) sites. The site location and measurement20

duration period are listed in Table 1 as well as the site aerosol optical properties of
the scattering coefficient, backscatter fraction and single scattering albedo over the
measurement period. SGP is a permanent facility and the other three sites, FKB, GRW
and HFE, are a mobile facility with varying operations periods. Data sets are limited
by the deployment period and instrument operation. Detailed information about each25

site is located on the ACRF web site at http://www.arm.gov/sites. SGP is located in an
agricultural region in the central US. FKB is located in the Black Forest of Germany in
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a valley with agriculture and surrounded by hills with coniferous forests. HFE is in the
Anhui Province of China with mixed agricultural, pollution and dust aerosol sources.
GRW is a remote marine site in the Atlantic Ocean with periodic local pollution from
airport traffic and long-range transport from Europe.

The measurement configuration was similar at each site. Sheridan et al. (2001)5

gives a detailed description of the aerosol optical measurements at SGP. Sample air
enters the system at ∼800 lpm via a 10 m stack. The sample air splits between the
five, 30 lpm sample lines. The sample for the optical measurements flows through an
impactor which size segregates the aerosol between sub µm and sub 10 µm aerosol in
30 min intervals. A pickoff from one of the 30 lpm sample lines diverts a 500 ccm flow10

to the CCN instrument.
The properties of the aerosol total scattering (7–170◦) and backscattering (90-170◦)

coefficients at 450, 550 and 700 nm radiation are measured with a TSI model 3563
integrating nephelometer. The aerosol light absorption coefficient was measured using
a filter-based Radiance Research PSAP at 470, 528 and 660 nm radiation. Corrections15

based on light truncation in the nephelometer and aerosol scatter from the PSAP filter
were performed (Anderson and Ogren, 1998; Bond et al.,1999). The 470 nm absorp-
tion coefficient was wavelength adjusted to 450 nm so that it would coincide with the
scattering coefficient wavelength of the nephelometer.

The CCN at several supersaturations was measured using a DMT CCN counter20

(Roberts and Nenes, 2005). The percent supersaturation (%SS) of the instrument
was stepped in 7 intervals every 30 min with 5 min at each setting in a pyramid form.
The CCN instrument was serviced and calibrated at the beginning and end of each
deployment for the mobile facility and bi-annually for the SGP site. The %SS in the
CCN was calculated using a heat transfer and fluid dynamics model flow model (Lance25

et al., 2006). The model uses the calibrated temperature, pressure and flows in the
instrument to calculate the %SS. Small variations in the %SS will arise from changes
the in column thermal properties in the instrument. Rose et al. (2008) has an extensive
discussion that compares model and salt calibration calculations of the instrument %SS
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and uncertainty associated with thermal properties.

3 Empirical method

The empirical fit uses a power law, as derived by Twomey (1959), to parameterize the
CCN activity spectra.

CCN(%SS)=C(%SS)k (1)5

The fit used values of %SS in the range of 0.2 to 0.9, with variance of ±0.1% SS
between sites. At higher %SS the k parameter decreases (Khvorostyanov and Curry,
2006) and below this range the uncertainty in the %SS increases (Rose et al., 2008).
Fit parameters with poor goodness of fit chi-square values were rejected as they usually
indicated noisy activation spectra or spikes in the data. The C and k fit parameters10

were then fit to linear correlations with the sub micron aerosol backscatter fraction and
single scatter albedo at 450 nm as follows.

C/σsp (450 nm) = m ·BSF (450 nm)+b (2)

k =m ·SSA (450 nm)+b (3)

Here, C is normalized to the submicron total angular scatter at 450 nm, σsp (450 nm),15

SSA (450 nm) is the aerosol sub µm single scattering albedo at 450 nm, m and b
are the slope and offset of the linear correlations. The empirical fit calculates CCN
by replacing the C and k fit parameters with the linear fits in Eqs. (2) and (3). In
these fits BSF ranged between 0.08 and 0.18 and SSA was limited to 0.8 to 1.0. In
order to screen for dust particles that may skew the fits, data with scattering Ångström20

exponents below 1.0 were eliminated.
The suitability of using aerosol optical measurements to predict CCN depends on

the overlap between the critical aerosol size for activation to CCN and the aerosol
scattering efficiency. The empirical fit maximizes this overlap by selecting sub µm
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aerosol at the shortest wavelength of the nephelometer, 450 nm. The Mie scattering
calculations of the aerosol backscatter fraction and scattering efficiency in Fig. 1 show
the probable size range of the nephelometer measurements for different lognormal
widths. The typical aerosol radius for CCN formation is about 20–100 nm (McFiggans
et al., 2006), which is smaller than the sensitivity of the optical measurements. The5

comparison of CCN to aerosol optical properties assumes that the small mode aerosol
are essentially a non-activating. There is much support from this study as well past
field studies that small mode particles may have only a minimal contribution to CCN
formation. From observations at all of the sites in this study the aerosol single scatter
albedo decreases significantly with particle size (Fig. 2). Smaller particles tend to10

have a higher fraction of absorbing material that may limit their ability to act as CCN.
A study of the size-dependent composition from several sites found that the organic
fraction dominates the fine mode aerosol smaller than 100 nm diameter (McFiggans,
et al., 2005). Another study by Ervens et al. (2007) found that the oxygenated organic
fraction could be modeled as insoluble with respect to activation and still obtain good15

agreement with the measured CCN. As small aerosol likely have a high fraction of low
solubility organics, the low sensitivity of the optical measurements in this size range
may have a minimal effect on the empirical method of this study.

4 Results and discussion

The sites in this study are regional settings and as such represent aged aerosol of20

mixed composition. No one site has a characteristic single composition type to clearly
distinguish it from the others. Instead the differences are subtle. Table 1 compares
the average optical properties of the data used in the analysis between the four sites.
The optical properties in Table 1 are only for sub µm particles at 450 nm and so ignore
the coarse mode fraction. GRW and HFE have the smallest BSF and hence largest25

particles due to the influence of sea salt at GRW and probable dust at HFE. The like-
lihood of dust at HFE is supported from observation of construction in the region, the
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presence of a local cement factory and coal mine as well as low Angstrom exponents
and moderate to low hygroscopic growth factors typical of dust aerosol. The SSA at
GRW is unexpectedly low at 0.88, which points to the influence of long-range transport
of pollution aerosol as well as possible local pollution at the site despite extensive edit-
ing of short-duration data spikes to filter for local pollution. The data at GRW is biased5

toward times with higher aerosol loading, as the uncertainty of intensive properties at
very low scattering and absorption signals was too high to include this data in the anal-
ysis. Both the HFE and FKB sites were influenced by frequent precipitation. The SSA
was usually lower after a rain event as much of the highly soluble aerosol with higher
SSA values may have been scavenged.10

Figures 3 and 4 show the correlations between the power law fit parameters and the
sub um aerosol backscatter fraction and single scattering albedo. The fits from SGP
use data that span 0.2 to 0.8% SS in steps of 0.20, 0.41 0.60 and 0.80 ±0.01. Ranges
of %SS for the other sites are given in Table 1. Because of conditions of high aerosol
loading at HFE the lowest %SS value at ∼0.2 was not used in the analysis. The CCN15

instrument may have insufficient water or too short of a sample residence time for the
aerosol to activate under high aerosol concentrations and low %SS (DMT, 2009).

In order to show a direct correlation to the backscatter fraction and hence aerosol
size, the power law parameter C is normalized to the aerosol scattering coefficient
at 450 nm. This normalized parameter, C/σsp (450 nm), is the inverse aerosol scat-20

tering efficiency (1/Qsp) in the case when 100% of the CN in the effective scattering
size range activate to CCN. Figure 3 shows C/σsp (450 nm) increases as the aerosol
size decreases at higher backscatter fractions. At these sites the aerosol scattering
increases faster with aerosol size than CCN formation. This slope varies with mea-
surement site and likely reflects differences in the size-dependent aerosol composition25

at each site. The slope in Figure 3 for GRW is significantly lower than the other three
sites, which may reflect the aerosol sea salt composition as sea salt has a high scat-
tering efficiency. The range of BSF at GRW was extended to 0.04 to accommodate the
larger aerosol at this site and provide enough data for the fit calculation.
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The k parameter indicates the steepness of the change in CCN concentration with
%SS. Low values of k are typical of highly soluble aerosol such as sea salt and high
k values of low-solubility aerosols. The range of k values (Table 1) and slope of k
vs. SSA varies between sites. GRW has the lowest k values of 0.49 ±0.43 and FKB
has the highest k values with 1.06±0.65. The range of SSA at HFE does not extend5

higher than 0.941. At this site absorbing aerosol is ubiquitous and may reflect a high
organic fraction. The slope of k vs. SSA at both HFE and GRW is low. For these sites
changes in the aerosol absorbing fraction or equivalent black carbon (EBC) have a
weak influence on CCN formation. In these instances other compounds may moderate
CCN activation. At GRW the aerosol composition may have a high enough sea salt10

fraction to weaken the influence of organics on CCN. At HFE dust may moderate the
influence of EBC on CCN. The higher slopes of k vs. SSA at SGP and FKB alternatively
indicate a strong influence of EBC and other organics on CCN formation.

Figure 5 shows the fit correlations to the measured CCN. All four sites exhibit good
fits with r2 correlation values of 0.66 or higher and slopes between 0.81 and 1.03.15

The goodness of the fit depends on both the ability of the power law fit parameters
to represent the measured CCN as well as the correlation between the power law fit
parameters, C and k, and the optical properties of BSF and SSA. For all of the fits the
power law parameters under predict the measured CCN by 4 to 11%.

Figure 6 gives a clearer view of the reason for the low slopes and positive intercepts20

in the correlations. The empirical model over predicts CCN at low measured CCN
values. This over prediction is highest for FKB and hence results in a lower slope in
Fig. 5. At the lower aerosol number concentrations the uncertainty in the calculated
SSA and BSF values are higher. Another contributing factor to this uncertainty is the
nonlinearity of the correlation between the k fit parameter and SSA, particularly at low25

SSA values. Despite these limitations the empirical fit is able to predict the measured
CCN within ±50% at the higher concentrations using only the aerosol optical properties
as proxies for aerosol composition and size.
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5 Summary and conclusions

An empirical model uses the aerosol optical properties to predict the measured CCN
concentration as a function of percent super saturation. The aerosol backscattering
fraction and single scatter albedo act as proxies for the aerosol size and composition in
the model. Relatively good agreement was found between the predicted and measured5

CCN values with higher uncertainties at low CCN concentrations.
The fit parameters varied with aerosol type and region. The slope of C/σsp (450 nm)

vs. BSF was higher at continental sites and lower at a marine site. This parameter
represents the inverse size-dependent scattering efficiency of the CCN and is therefore
expected to be high for organic aerosol with low scattering efficiency and lower for sea10

salt, which has a high scattering efficiency.
The second fit parameter is the slope of k vs. SSA and signifies the relative growth

of CCN with %SS as a function of the aerosol absorption or EBC content. For com-
bustion aerosol the BC and total organic carbon content usually covary and the second
parameter would be an indication of the effect of organic aerosol on CCN formation.15

This may not be the case for noncombustion organic aerosol. This slope of k vs. SSA
varied between continental sites, a marine site and a site influenced by dust. At the
marine site changes in the SSA had a weak influence on k and may indicate that a
highly hygroscopic compound like sea salt can moderate the influence of less hygro-
scopic species like BC. Having even a small fraction of sea salt in the aerosol may be20

enough for the aerosol to activate even at low %SS, especially if the aerosol is relatively
large as was the case at GRW. The slope of k vs. SSA was also low at HFE, which
could be a factor of dust moderating the aerosol activation as well as high scatter and
uncertainty in the data.

This study is a first step in a process to better predict CCN concentration as a function25

of %SS from the aerosol optical properties. Further analysis includes well-defined fit
parameters for each aerosol type and region. Having well-defined fit parameters for
an aerosol type will entail analysis of seasonal trends of the fits and comparison to
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size-dependent aerosol composition to better quantify the fit parameters with aerosol
type.
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Table 1. Field site name, location, date of operation, range of % super saturation, average of
aerosol sub µm scattering coefficient (σsp), backscatter fraction, single scatter albedo at 450 nm
and power law k fit parameter. Values in parentheses are (±1 std dev.).

Site lon. lat. Date %SS range σsp BSF SSA k

SGP 36◦36′ N, 97◦29′ W 10 Feb–20 May 2009 0.19–0.82 47 (51) 0.12 (0.02) 0.92 (0.04) 0.73 (0.26)
FKB 48◦32′ N, 08◦23′ E 31 May–6 Dec 2007 0.26–0.83 51 (38) 0.12 (0.02) 0.88 (0.04) 1.06 (0.65)
HFE 32◦33′ N, 116◦46′ E 26 Jul–23 Aug 2008 0.40–0.88 118 (68) 0.10 (0.01) 0.89 (0.03) 0.76 (0.33)
GRW 39◦5′ N, 28◦1′ W 20 Apr–27 Sep 2009 0.21–0.86 11 (8) 0.09 (0.02) 0.88 (0.06) 0.43 (0.42)

9007

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/8995/2010/acpd-10-8995-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/8995/2010/acpd-10-8995-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 8995–9013, 2010

Empirical predictions
of CCN from aerosol

optical properties

A. Jefferson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

            

            
       

Figure	
  1.	
  Mie	
  calculations	
  of	
  the	
  aerosol	
  scattering	
  efficiency	
  (black	
  
line),	
  and	
  backscatter	
  fraction	
  at	
  three	
  lognormal	
  distribution	
  widths	
  
of	
  s=	
  1.4	
  (blue),	
  1.5	
  (red)	
  and	
  1.6	
  (green).	
  The	
  dashed	
  lines	
  show	
  the	
  
range	
  of	
  backscatter	
  values	
  used	
  in	
  this	
  study.	
  	
  

Fig. 1. Mie calculations of the aerosol scattering efficiency (black line), and backscatter fraction
at three lognormal distribution widths of s= 1.4 (blue), 1.5 (red) and 1.6 (green). The dashed
lines show the range of backscatter values used in this study.
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 Figure 2. Single scatter albedo vs backscatter fraction at 450 nm.  

Data is from SGP        
 
             

Fig. 2. Single scatter albedo vs backscatter fraction at 450 nm. Data is from SGP.
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Figure	
  3.	
  Graphs	
  of	
  C/scattering	
  coefficient	
  vs	
  backscatter	
  fraction	
  at	
  450	
  nm	
  for	
  
a)	
  SGP	
  b)FKB	
  c)	
  HFE	
  and	
  d)	
  GRW	
  

Fig. 3. Graphs of C/scattering coefficient vs backscatter fraction at 450 nm for (a) SGP (b) FKB
(c) HFE and (d) GRW.
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Figure	
  4.	
  Graphs	
  of	
  k	
  parameter	
  vs	
  single	
  scatter	
  albedo	
  at	
  450	
  nm	
  for	
  
a)	
  SGP	
  b)FKB	
  c)	
  HFE	
  and	
  d)	
  GRW	
  Fig. 4. Graphs of k parameter vs. single scatter albedo at 450 nm for (a) SGP (b) FKB (c) HFE

and (d) GRW.
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Figure	
  5.	
  Correlations	
  of	
  calculated	
  and	
  measured	
  CCN	
  for	
  a)	
  SGP,	
  b)	
  FKB,	
  c)	
  HFE	
  and	
  d)	
  GRW	
  
Fig. 5. Correlations of calculated and measured CCN for (a) SGP, (b) FKB, (c) HFE and (d)
GRW.
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Figure	
  6.	
  Correlations	
  of	
  calculated/measured	
  CCN	
  and	
  measured	
  CCN	
  for	
  a)	
  SGP,	
  b)	
  FKB,	
  c)	
  
HFE	
  and	
  d)	
  GRW	
  Fig. 6. Correlations of calculated/measured CCN and measured CCN for (a) SGP, (b) FKB, (c)

HFE and (d) GRW.
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